99范文网 > 总结范文 > 工作总结 >

工作总结高中数学

| 新华

工作总结高中数学篇1

时间过得真快,转眼又过了一学期。这是忙碌的一学期,也是充实的一学期,收获的一学期。在学校教务处的安排下,这一学期由我负责高二(2)、(4)两个班的教学工作。我结合学生的实际情况,有针对性地制订了教学计划,使教学工作有计划,有组织,有步骤地开展,在考试中203班数学成绩在普通班中取得了第二名,205班数学成绩超过重点班200班,达到全年级第二名,较好地完成了教学任务。现将本学期教学工作总结如下:

一、充分的课前备课

上好新课的前提是备好课,根据教材内容及学生的实际,精心设计教学过程和拟定教学方法尤为重要,因此,我把备课当作关键的关键。

本学期,我加强了理论学习,特别是报名参加了省级数学骨干教师培训班的学习,受益匪浅,学习了中小学常用的教学方法,包括讲授法,讨论法,直观演示法,练习法,读书指导法;而课堂教学常用方法包括讲授式的教学方法,问题探究式教学方法,训练与实践式教学方法,基于现代信息技术的教学方法。

通过学习,这也为我增加了不少自信。我本着“干什么、学什么,缺什么,补什么”的原则,在学期初上新课前,认真研究教材、教参、教案,试题,吃透知识,力求每一课都备的完美。课后,我认真反思,对每节课进行了再备课。

二、高效率的课堂教学

上好课就要抓好每一次课堂教学。在教学中,我注重理清知识的条理和逻辑,坚持每个知识点讲清楚,分析透,通过多种方式将课本知识化难为易,不给学生吃夹生饭,增加情景教学,努力增强课堂教学的效果。学习了课堂教学常用方法包括讲授式的教学方法,问题探究式教学方法,训练与实践式教学方法,基于现代信息技术的教学方法后,在课堂上我有意识选择去实践些教学方法。

根据数学课程的特点,实施较多的是讲授式的教学方法和问题探究式教学方法,比如概念性课题,一般采用问题探究式教学方法。我在上选修2—3《排列与组合》这一课时,就采用了问题探究式教学方法。新课引入通过提出:

问题1:我们班级50名同学中选出5名同学参加数学竞赛有多少种选法?这是什么方面的问题。学生作答,得出能描述的是只需要选出来,不需要研究顺序,故而是一个组合问题。

问题2:如果竞赛选手获奖后要求拍照纪念,共有多少种排座方式,这个是什么问题?你能举出其他例吗?引导学生阅读教材。

问题3:那么需要研究顺序的问题就是排列问题,又该如何去求呢?从而较自然的.引导学生了解排列数公式与组合数公式。在知识点讲授完后对先天作业进行讲评,同时增加了一问:探究什么问题与顺序有关,什么问题又与顺序无关是解决排列组合问题的关键。最后课堂上布置相关习题指导学生练习,学生完成得很好。

三、完善的课后反思

看过一句这样的话“思之则活,思活则深,思深则透,思透则新,思新则进”。学期初我虚心地向数学组长张建辉老师取经学习,学习他的教法和课堂处理艺术,同时也得到了很多同行的指导,比如卓志波老师的课堂提问效果很好,比如彭一秋老师的黑板板书真的狠棒,杨立群老师的阶梯式作业布置很有特色,都值得我好好的学习借鉴。

我上完每节课后都反思自己的教学行为,总结教学的得失与成败,对整个教学过程进行回顾、分析和审视,才能逐渐形成自我反思的意识和自我监控的能力,才能不断丰富自我素养,提升自我发展能力,逐步完善教学艺术,以期实现教师自身的教学水平提升。

总之,路漫漫其修远兮,吾将上下而求索。一学期来,我的教学工作中取得了一定的成绩,个人的教学也有了一点提高,但是与现代教学质量的要求还有不小的距离,自身尚存在一定的不足,如:在教学工作中课堂语言不够生动等问题,这些问题尚需在今后的教学工作中不断改进和完善,以达到更高的高度为学生更好的服务。

工作总结高中数学篇2

在本学期中,本人担任了高三(23)班和(24)班的数学教学工作。还记得当初学校通知我连任高三的时候,觉得压力还是挺大的。作为年轻教师,教学经验不足,对高考的把握始终不够。特别又是高三(23)和(24)班都是文科班,学生的基础普遍是偏差的。高考数学试卷的特点是难度大,区分度大,高考所占权重大,数学也是高三学生最重视的学科。高三数学的教学直接关系着考生高考的成绩,数学教师的责任是重大的。下面是我对这学期的具体做法与体会。

一、时间进度的安排。

在高一、高二时完成了整个高中数学的新课教学工作,所以高三从前一年的7月就开始复习,这样的安排是完全合理的,我们第一遍复习用了高三的整个第一学期,应该是比较充分的,效果也比较显著的。第二学期前一个月作专题复习,主要是知识专题,实际上是第二遍的知识的复习,是对前一学期第一轮复习的补充与提高。从第二学期刚开学时的第一次考试和一个月后全市第一次模拟的考试成绩对比来看进步是显著的。4月初第一次模拟考试后我们安排做综合练习,我们安排就做前一年即20__年的高考数学试卷,这也用了一个月左右的时间。最后一个月,从四月底到五月中有2到3周的时间,这段时间很关键,我们安排解答题的专门练习,针对高考要考的6道解答题我们分6个单元做练习,分别为①三角函数,②概率统计,③立体几何,④解析几何,⑤数列不等式,⑥导数及其应用。该部分的习题的都是自己组卷,这样针对性较强,难度适当,学生反映也较好。最后在学生自主复习的两周,学生自主复习时我们要求学生做一些做今年当年的模拟试题,主要是今年安徽省省各地市的模拟试卷,这些试题的水平比较高,高考的方向掌握的比较准,难度不大,正适合这时的需要。

二、复习一定要把握好高考的方向。

我省的高考命题水平逐年提升,质量逐年提高。而他们命题的样板就是前一年考试中心的试卷,他们也在努力学习考试中心的命题思想,所以只要充分研读前一二年考试中心的试卷就能摸准当年高考命题的脉搏。实际情况也是如此,高考试卷的型式:21道试题,10道选择题,5道填空题,6道解答题,各题的得分比例都与去年的考试中心的命题试卷雷同。各章考查知识点在试卷中的比率与6个解答题的考查方向,都与去年考试中心的试卷的相似。我就是以这样的思想来指导高考复习。也就是说以去年的考试中心的6道解答题主要考查方向是我们复习的主攻方向。

三、重点内容重点复习。

前面已经提到6个解答题是我们高考复习的重点,所以尤其要重点复习,在第一轮复习时,函数部分不要花费过多时间,集合与简易逻辑,向量部分,连续与极限,统计部分都不是重点,不必做过多过难的题。在第二年的5月份,也就是高考的最后阶段,这时的时间最宝贵,我们针对高考的6个解答题安排了6个专题复习。现在看这样的安排是完全正确的。在具体复习中教师要对习题试题进行指导性的选择。

在过去这一学期里,我们努力了,我们奋斗了,我们也取得了一些成绩,工作成绩得到了学校的肯定。今后,我们将更加努力工作,以对党的教育事业的无限热爱和无限负责的精神,做好本职工作,为学校建设多作贡献。

工作总结高中数学篇3

1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

中元素各表示什么?

注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

3.注意下列性质:

(3)德摩根定律:

4.你会用补集思想解决问题吗?(排除法、间接法)

的取值范围。

6.命题的四种形式及其相互关系是什么?

(互为逆否关系的命题是等价命题。)

原命题与逆否命题同真、同假;逆命题与否命题同真同假。

7.对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B中有元素无原象。)

8.函数的三要素是什么?如何比较两个函数是否相同?

(定义域、对应法则、值域)

9.求函数的定义域有哪些常见类型?

10.如何求复合函数的定义域?

义域是_____________。

11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

12.反函数存在的条件是什么?

(一一对应函数)

求反函数的步骤掌握了吗?

(①反解x;②互换x、y;③注明定义域)

13.反函数的性质有哪些?

①互为反函数的图象关于直线y=x对称;

②保存了原来函数的单调性、奇函数性;

14.如何用定义证明函数的单调性?

(取值、作差、判正负)

如何判断复合函数的单调性?

15.如何利用导数判断函数的单调性?

值是()

A.0B.1C.2D.3

∴a的最大值为3)

16.函数f(x)具有奇偶性的必要(非充分)条件是什么?

(f(x)定义域关于原点对称)

注意如下结论:

(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

17.你熟悉周期函数的定义吗?

函数,T是一个周期。)

如:

18.你掌握常用的图象变换了吗?

注意如下“翻折”变换:

19.你熟练掌握常用函数的图象和性质了吗?

的双曲线。

应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程

②求闭区间[m,n]上的最值。

③求区间定(动),对称轴动(定)的最值问题。

④一元二次方程根的分布问题。

由图象记性质!(注意底数的限定!)

利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20.你在基本运算上常出现错误吗?

21.如何解抽象函数问题?

(赋值法、结构变换法)

22.掌握求函数值域的常用方法了吗?

(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。)

如求下列函数的最值:

23.你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?

24.熟记三角函数的定义,单位圆中三角函数线的定义

25.你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?

(x,y)作图象。

27.在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。

28.在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?

29.熟练掌握三角函数图象变换了吗?

(平移变换、伸缩变换)

平移公式:

图象?

30.熟练掌握同角三角函数关系和诱导公式了吗?

“奇”、“偶”指k取奇、偶数。

A.正值或负值B.负值C.非负值D.正值

31.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?

理解公式之间的联系:

应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)

具体方法:

(2)名的变换:化弦或化切

(3)次数的变换:升、降幂公式

(4)形的变换:统一函数形式,注意运用代数运算。

32.正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?

(应用:已知两边一夹角求第三边;已知三边求角。)

33.用反三角函数表示角时要注意角的范围。

34.不等式的性质有哪些?

答案:C

35.利用均值不等式:

值?(一正、二定、三相等)

注意如下结论:

36.不等式证明的基本方法都掌握了吗?

(比较法、分析法、综合法、数学归纳法等)

并注意简单放缩法的应用。

(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果。)

38.用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始

39.解含有参数的不等式要注意对字母参数的讨论

40.对含有两个绝对值的不等式如何去解?

(找零点,分段讨论,去掉绝对值符号,最后取各段的并集。)

证明:

(按不等号方向放缩)

42.不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)

43.等差数列的定义与性质

0的二次函数)

项,即:

44.等比数列的定义与性质

46.你熟悉求数列通项公式的常用方法吗?

例如:(1)求差(商)法

解:

[练习]

(2)叠乘法

解:

(3)等差型递推公式

[练习]

(4)等比型递推公式

[练习]

(5)倒数法

47.你熟悉求数列前n项和的常用方法吗?

例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

解:

[练习]

(2)错位相减法:

(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

[练习]

48.你知道储蓄、贷款问题吗?

△零存整取储蓄(单利)本利和计算模型:

若每期存入本金p元,每期利率为r,n期后,本利和为:

△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)

若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n次还清。如果每期利率为r(按复利),那么每期应还x元,满足

p——贷款数,r——利率,n——还款期数

49.解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一

(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不

50.解排列与组合问题的规律是:

相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

如:学号为1,2,3,4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是()

A.24B.15C.12D.10

解析:可分成两类:

(2)中间两个分数相等

相同两数分别取90,91,92,对应的排列可以数出来,分别有3,4,3种,∴有10种。

∴共有5+10=15(种)情况

51.二项式定理

性质:

(3)最值:n为偶数时,n+1为奇数,中间一项的二项式系数最大且为第

表示)

52.你对随机事件之间的关系熟悉吗?

的和(并)。

(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥。

(6)对立事件(互逆事件):

(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件。

53.对某一事件概率的求法:

分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即

(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

如:设10件产品中有4件次品,6件正品,求下列事件的概率。

(1)从中任取2件都是次品;

(2)从中任取5件恰有2件次品;

(3)从中有放回地任取3件至少有2件次品;

解析:有放回地抽取3次(每次抽1件),∴n=103

而至少有2件次品为“恰有2次品”和“三件都是次品”

(4)从中依次取5件恰有2件次品。

解析:∵一件一件抽取(有顺序)

分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题。

54.抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。

55.对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。

要熟悉样本频率直方图的作法:

(2)决定组距和组数;

(3)决定分点;

(4)列频率分布表;

(5)画频率直方图。

如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________。

56.你对向量的有关概念清楚吗?

(1)向量——既有大小又有方向的量。

在此规定下向量可以在平面(或空间)平行移动而不改变。

(6)并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

(7)向量的加、减法如图:

(8)平面向量基本定理(向量的分解定理)

的一组基底。

(9)向量的坐标表示

表示。

57.平面向量的数量积

数量积的几何意义:

(2)数量积的运算法则

58.线段的定比分点

※.你能分清三角形的重心、垂心、外心、内心及其性质吗?

59.立体几何中平行、垂直关系证明的思路清楚吗?

平行垂直的证明主要利用线面关系的转化:

线面平行的判定:

线面平行的性质:

三垂线定理(及逆定理):

线面垂直:

面面垂直:

60.三类角的定义及求法

(1)异面直线所成的角θ,0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°

(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求。)

三类角的求法:

①找出或作出有关的角。

②证明其符合定义,并指出所求作的角。

③计算大小(解直角三角形,或用余弦定理)。

[练习]

(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线。

(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30°。

①求BD1和底面ABCD所成的角;

②求异面直线BD1和AD所成的角;

③求二面角C1—BD1—B1的大小。

(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小。

(∵AB∥DC,P为面PAB与面PCD的公共点,作PF∥AB,则PF为面PCD与面PAB的交线……)

61.空间有几种距离?如何求距离?

点与点,点与线,点与面,线与线,线与面,面与面间距离。

将空间距离转化为两点的距离,构造三角形,解三角形求线段的长(如:三垂线定理法,或者用等积转化法)。

如:正方形ABCD—A1B1C1D1中,棱长为a,则:

(1)点C到面AB1C1的距离为___________;

(2)点B到面ACB1的距离为____________;

(3)直线A1D1到面AB1C1的距离为____________;

(4)面AB1C与面A1DC1的距离为____________;

(5)点B到直线A1C1的距离为_____________。

62.你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?

正棱柱——底面为正多边形的直棱柱

正棱锥——底面是正多边形,顶点在底面的射影是底面的中心。

正棱锥的计算集中在四个直角三角形中:

它们各包含哪些元素?

63.球有哪些性质?

(2)球面上两点的距离是经过这两点的大圆的劣弧长。为此,要找球心角!

(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角。

(5)球内接长方体的对角线是球的直径。正四面体的外接球半径R与内切球半径r之比为R:r=3:1。

积为()

答案:A

64.熟记下列公式了吗?

(2)直线方程:

65.如何判断两直线平行、垂直?

66.怎样判断直线l与圆C的位置关系?

圆心到直线的距离与圆的半径比较。

直线与圆相交时,注意利用圆的“垂径定理”。

67.怎样判断直线与圆锥曲线的位置?

68.分清圆锥曲线的定义

70.在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制。(求交点,弦长,中点,斜率,对称存在性问题都在△≥0下进行。)

71.会用定义求圆锥曲线的焦半径吗?

如:

通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切。

72.有关中点弦问题可考虑用“代点法”。

答案:

73.如何求解“对称”问题?

(1)证明曲线C:F(x,y)=0关于点M(a,b)成中心对称,设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点。

75.求轨迹方程的常用方法有哪些?注意讨论范围。

(直接法、定义法、转移法、参数法)

76.对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值。

工作总结高中数学篇4

时间转眼即逝。一个学期的教学工作又将画上圆满的句号。本学期我除了担任我校八年级89班班主任外,还兼任八年级89班和90班的数学教学工作。八年级上学期再过数日就结束了,在此,我将本学期在教学方面的工作总结如下:

一、指导思想

在教学工作方面,我的一切行动都是以马列主义、毛泽东思想、邓小平理论、三个代表重要思想以及_为指导思想的。教学和班级管理上坚持我校的办学思想,力所能及的为我校的发展尽一份微薄之力。在工作的过程当中,我紧紧围绕我国相关法律法规去办事,尽职尽责,克忠职守。坚持我国教育方针政策,以素质教育为中心,积极推进教育改革方针。尊重学生,敬岗爱业,热爱生活,积极进取。

二、工作成效

本学期由于我校人事变动,我校八年级四个班中,八年级89班和90班的数学教学工作继续有我担任,但是91班和92班数学教师有所调整。但是,通过本学期的两次月检测、一次期中考试的情况来看(期末考试正在进行,具体情况待有了结果再在日后加以分析),我所任教的两个班级仍然保持七年级时的优势(班级平均分差的一次高达22分之多)。并且两个班每次的检测平均分差不大,没有因为我是89班的班主任而对90班的成绩造成负面影响。即我随省为89班班主任,但在教学中我并没有偏袒89班而对90班的教学力度有所欠缺。总而言之,我的一切教学工作和教学行为都是本着“以人为本”的理念开展的,对两个班级的教学工作坚持公平、公正对待的原则,努力使自己的学生学到自己所需的内容,让自己的学生在数学方面能够有所进展。按照新课标的要求开展教学工作。

三、教学反思

说到“反思”,这似乎我自我参加工作以来提到的最频繁的一个词汇之一了。按照县教育局提出的“五个一”方针,我县所有中小学教师必须每周以反思、每月一心得、每学期一专著和一总结、每年一论文。由此可知,“五个一”当中做得最多的便是反思了。同时,“反思”一词也成了自我参加工作以来的最熟悉而又最陌生的词语了。

较之上个学年而言,我自知很多多方面已不如从前,诸如激情的消退,态度的怠慢,耐心的不足等都在一定程度上影响着自己的工作效率。除此之外,对学生的关注力度不够也是本学期的一个不足。

四、日后措施

回顾过去,未曾辉煌;展望未来,道路艰辛!为了在日后的漫漫长路中有所发展和提高,我将从以下几个方面加强自我管理,在工作过程中严格要求自己。

1、树立明确的目标。没有目标的人生是虚度的人生,来无声,去无息。因此,给自己个明确的目标,然后努力之,实现之!

2、加强专业知识的学习,提高业务水平。

3、加强锻炼,充沛精力。

4、注重修养,提升自我素养。

工作总结高中数学篇5

随着期末考试的来临,一学期的教学工作即将结束了。根据《大纲》和新课标的要求,以及陈校长的讲话精神和教研室的要求,本学期的教学教法主要是践行“三环五学”教学模式。在实践的过程中,摸石头过河,坎坎坷坷,懵懵懂懂,轻松与迷茫并存。

一、认真执行并检查落实预习环节

长期以来,本人坚持让学生养成课前预习的习惯,要求做到:

1、预习后你学到了什么,以完成课本后的习题和课堂练习的程度为标准。

2、本节内容你新学到了哪些,与之前的哪些内容有关联,形成自己的知识网络系统。

3、本节内容未掌握和理解的部分,你做标记了吗?

预习的好处之一,让学生经历带着新知识去学习新知识的过程,体会到知识间的联系,掌握起来更轻松。预习好处之二,对绝大部分学生而言,经过预习明白自己对新内容的掌握程度,会给自己一定的听课任务,因而目的性明确,自然效率就高。

二、很好的完成开学初的任务之一,让学生养成“说”的习惯

开学第一课就明确告诉学生,必须养成说的习惯,说你理解的和掌握的知识,帮助其他同学共同进步;说你的疑问之处和不能掌握的知识,让其他同学帮助你;对于后进生,要求其先听同学说,听老师说,然后再跟着说。开口说话,可以锻炼一个人的口语表达能力和逻辑思维能力,提高胆量,无意中也学习了很多知识,增强成就感。

三、充分发挥小组合作的优势

小组学习形式为学生提供了学习的空间,创造一个轻松,自主的学习环境,将课内知识拓展到课外,使他们在参与学习的活动中得到愉悦的情感体验。合作学习把学生由旁观者变为参与者。它要求那些已经掌握某种知识和技能的学生把知识和技能教给其它成员。作为讲授者的学生,为了能够教得更清楚、透彻,必须对所学的材料进行认真的阅读和分析。其他学生为了在课堂上有出色的表现,他们就自主的学习,去探究,学习积极性提高了,自学能力自然就提高了。

工作总结高中数学篇6

转眼间,进入文鼎中学已有一年多,在这期间我体会到了身为一名教师的酸甜苦辣,也让我体会到当一名教师的不容易与肩负的重任。回想起20__年8月,年轻的我捧着一颗颗热情、兴奋而充满期盼的心来到我的母校文鼎中学,激动不安之情油然而升。一个个沉甸甸的问号,在我脑中盘旋。我不断自问:作为一个刚毕业的新教师,我能做好吗,我能给学生带来一点进步吗?如今,我已在文鼎中学工作一年半了,我在这一年多的收获,见证了我的成长,为我毕业后的第一份工作画上一个完美的感叹号!在这一年半中,我感觉我经历了许多,这些从未有过的经历让我不断进步、不断成长。从开始上课的羞涩拘谨到课堂上的谈吐自如,感觉自己在一天天的长大,一步步实现从学生到老师的角色转化。文鼎给与我太多的第一次:第一次真正站在讲台上面对着四十五张天真的面孔、第一次与学生面对面的探讨问题、谈心,第一次与多位资深老师讨论交流,共同探讨教学中所遇到的问题……现就一年半的成长过程总结如下:

一、收获

1、备课:这学期的备课去繁就简,简化了知识上的抄写,强调教学过程的设计、教学语言的组织、教学环节的过渡;依据高考要求、学校招生考试试题难度要求,简化了去年过繁、过深的知识传授,尽量将教学难度降到合适的要求,并充分注重基础知识的掌握与记忆;根据学生实际,简化了过多、过细的教学内容,重点强化重点知识的讲解,让学生学会举一反三、由此及彼的学习方法,从而减轻了学生的记忆负担。

2、教学方法

在与教学不相冲突的情况下,尽量多听课,多听有经验教师的评课,多总结别人的优点,并根据自己的教学实际加以借用。在教学中,我还十分注意向有经验的教师请教,学习他们管理学生的方法、学习课堂教学的语言、学习教学过程的组织、学习各种课型的的授课方法、学习课件制作的经验,努力使自己的教学逐渐成熟。

3、课堂管理

通过带班,自己最深刻的体会学生管理真是一门博大精深的艺术,怎样使自己管理学生严而有度、活而不乱,怎样使课堂教学轻松的氛围中进行,都是自己今后还应努力的地方。

二、工作反思和改进

1、狠抓学生管理:通过工作实际和观察,教学效果的好坏与教师对学生的管理、与教师与学生之间的相处关系休戚相关。教师对学

生管理严格、教师与学生形成良好的师生关系会直接影响教学氛围、教学成绩。在今后应逐渐总结、不断学习,努力处理好与学生的关系,以更好的完成教学任务,提高教学质量。

2、完善常规教学:常规教学识教学工作的重点、核心,在今后的教学中应克服教学中的不规范行为,使自己的教学更加完善。针对今年的教学实际,在今后教学重要注意对学生的了解,注意学生的实际,把握教学的难度和深度,做到循序渐进,由浅入深,不能急于求成,应避免求全求细。

3、变换教学模式:在教学中,我过分强调知识的传授,一厢情愿的认为讲的次数多了学生自然就懂了,忽视了学生的自学能力的培养,在今后的教学中,应加强对学生自学能力的培养,充分发挥学生自主学习的能力,并切实不断变换教学方式:讲解、讨论、探究、记忆、练习等方式的灵活运用,避免教师的直接灌输。

4、提高教学水平:作为一名高中教师,仅仅只满足于平时的课堂教学达到要求是远远不够的,还要能走得出去、拿得出手,不仅要征服学生,还要能征服听课的教师、评委。在今后的教学中,自己还要不断学习先进的教学理念、学习先进的教学方法、总结先进的教学经验,努力形成符合学科教学特色的教学方法,使自己的教学水平早日登上一个新台阶。

5、工作细节有待改善

反思一个月的工作,自己在一些细节工作上还存在着不足,特别是学生对作业本的保管、潜能生作业的书写缺乏指导和严格要求。在今后的工作中,应充分注重工作中的细节,尽量使自己的工作做得扎实。

总之,在这一年半的教学工作中收获了很多,提高了很多,同时也感受到了自己的不足。在今后的工作中,应不断提高自己的业务能力、充实自己的业务理论水平、提高自己在学生管理方面的能力、注重细节工作,一如既往的兢兢业业,勤奋钻研,尽量使自己的各项工作做得更扎实、更完善、更有效、更实在。

工作总结高中数学篇7

在新课程背景下,如何构建高效课堂教学,提高学生的学习效率,对于一个高中教师来说,是很重要的课题。本人结合这几年的教学经验,谈谈自己的几点总结。

课堂教学是实施高中新课程教学的主要阵地,也是对学生进行思想品德教育和素质教育的主要途径。课堂教学不但要加强双基、提高和发展学生的智力,而且要培养学生的创造力;不但要让学生掌握课本知识,而且要让学生掌握学习的方法。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂上的学习效率,在有限的时间里,出色地完成教学任务。

一、选择恰当的教学方法

每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,对象的变化,灵活应用多种教学方法。数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识。而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论。如,在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度,这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。因此,在一堂课上,有时要同时使用多种教学方

法,“教无定法,贵要得法”,只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法。二、要善于应用现代化教学手段

在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:①能有效地增大每一堂课的内容量,从而把原来45分钟的内容在35分钟内就可以解决;②减轻教师板书的工作量,使教师能有精力精讲所举例子,提高讲解效率,使学生能够很好的把握教学重难点;③直观性强,容易激发学生的学习兴趣,有利于提高学生的学习积极性;④有利于对课堂所学内容的回顾和总结。因此,教师应利用业余时间掌握现代化教学手段的技巧和方法。

三、重视基础知识、基本技能和基本方法

众所周知,近年来,数学试题的新颖性、灵活性越来越强,不少教师把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中只是机械罗列公式和定理,或草草讲解一道例题,就通过大量的试题来训练学生。其实,在定理、公式的推证过程中,蕴含着重要的解题方法和规律。教师没有充分展示思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理,结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生

工作总结高中数学篇8

这学期我担任的是高三(1)、(2)班的数学老师,高三的学习是紧张的,一学期的时光过得很快,回顾这一学期的工作,我主要从以下几个方面对本学期教学工作情况作如下总结:

1、备课:根据课标要求,提前备好课,写好教案。备课时认真钻研教材、教参,学习好大纲,虚心向同年组老师学习、请教。力求吃透教材,找准重点、难点。积极参加教研室组织的教研活动,在教研员王老师、张笃华主任、王生组长、付国鹏老师的指导和帮助下进行集体备课,仔细听,认真记,领会精神实质。复习阶段,我把每一单元的知识框架、重点内容印在试卷上,为的就是让学生有个清晰的复习印象随时能复习、浏览;

2、上课:上好课的前提是做好课前准备,不打无准备之仗。上课时认真讲课,力求抓住重点,突破难点,精讲精练。运用多种教学方法,从学生的实际出发,注意调动学生学习的积极性和创造性思维,使学生有举一反三的能力。桌间巡视时,注意对学困生进行面对面的辅导,课后及时做课后记,找出不足。

3、辅导:我利用课余时间对学生进行辅导,不明白的耐心讲解,教给他们好的记忆方法,好的学习习惯,做到对所学知识巩固复习,及时查缺补漏。

4、作业:由于高三的课业负担较重,我只布置适量作业,利用好订的学案,且作业总是经过精心地挑选,适当地留一些有利于学生能力发展的、发挥主动性和创造性的作业。

5、爱就是了解。平常要多关心学生的一些生活情况和学习情况,其次要尊重学生的人格,理解学生要从青少年的心理发展特点出发,理解他们的要求和想法,理解他们幼稚和天真;信任学生要信任他们的潜在能力,只有这样,学生才能与教师缩小心理距离,学生才会对教师产生依赖感。

6、个人学习:积极学习各种教育理论,以充实自己,以便在工作中以坚实的理论作为指导,更好地进行教育教学。

7、教研活动:积极参加学校、广州市、海珠区的每次教研活动,参加区组织的批改试卷,并且圆满完成任务。

同时担任高三数学备长,我们组坚持每周集体备课。有时探讨课堂优化教学,有时探讨专题,群策群力,并主要做法:

1、每周一套滚动试题。

2、每周至少小测一次。

3、每月或每单元大测一次。

4、区统测前组织高三综合测评一次。

以上是我这学期的工作总结,希望下学期会有更好的收获。

92684